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ABSTRACT

We have taken basis functions with cubic B-splireesd weight functions with quartic B-splines in
Petrov-Galerkin method to solve a boundary valublem of fourth order. In this method, the cubis@ines and quartic
B-splines are redefined into new sets of functishéch contain the equal number of functions. Td tee accuracy and
efficiency of the method proposed, the numericalits obtained are presented in the form of absautors and found

that the obtained results are giving a little absokrror.
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INTRODUCTION

Consider a general linear boundary value problefowrth order

POVPO+ p(OV'(D+ pOAVOI+ ROX WX+ XO)E= @)t & € b (1)

Subject to the boundary conditions

v@=A, MB=G, U3= A U= ¢ (22)

v@=A, MB=G, V(3= A Y= ¢ (2b)

v@=A, vB=G, Wato (a= A \(pro, V) ( (2c)

where A, Gy, A1, C, ciando, are real constants and(fy, pu(t), p(t), ps(t), pst) and q(t) are continuous

functions defined in [a, b].

The fourth order boundary value problems arisdénareas of fluid mechanics, elasticity and quaneuhanics
and in some allied areas of science and engine€rfimg existence and uniqueness for the solutiathede problems are
described in Agarwal [1]. The exact solutions o€lsuype of boundary value problems are rarely atdl Various
numerical methods have been developed by manyrodsra [2-21]. Till now, the researchers did nat gabic B-splines
as basis functions and quartic B-splines as wdigittions in the Petrov-Galerkin method to solvertb order boundary

value problems of the type (1)-(2). That's why wanivto use the above method as our proposed method.
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66 K. N. S. Kasi Viswanadham & S V Kiranmayi.Ch

The subsequent sections are dealt with the justifio of using Petrov-Galerkin method, a descriptd using
proposed method with the types of boundary conuti¢2), the procedure of solving the nodal pararsesad the
application of the proposed method on solving sEvexamples of linear and nonlinear boundary vgiueblems.
By using quasilinearization technique [22], a noedr problem can be converted into a sequencaediriproblems and
the limit of solutions of these generated lineashpems is the solution of the nonlinear probleme Tonclusions are

presented in the last section.
JUSTIFICATION OF USING PROPOSED METHOD

The approximate solution in Finite Element Methd&dENl) can be obtained as a linear combination ofsbas
functions which constitute a basis for the appr@tion space under consideration. Petrov-Galerkithatkis one of the
variational methods involved in FEM. The residuélapproximation is made orthogonal to the weightctions in
Petrov-Galerkin method. Regardless of propertiethefdifferential operator defined in the givenfeliéntial equation, a
weak form of approximation solution for the diffatal equation exists and is unique under appréprianditions [23,
24]. Further, if we pay sufficient attention to theundary conditions [25], the weak solution tetalan exact solution of
the differential equation. This means that the désnctions should become zero on the boundary evtier essential

(Dirichlet) type of boundary conditions are definédso the basis functions and the weight functiaresequal in number.

DESCRIPTION OF THE PROPOSED METHOD
Cubic B-splines and Quartic B-splines
The cubic B-splines and quartic B-splines are diesdrin [26-28]. Space variable domain [a, b] igidkd into

spaced knots (which need not be spaced evenlyhdiyethe partitiona = {y <t <...<t,_1<t, =Db. Six additional

knotst s, t,, tg, th+, the2  @ndt,.z are introduced which satisfy the relation

ta<to<t. <ty and t,<tp,;<tp.o<tp.s,

Now the cubic B-splines§ ()" < are defined by

i+2 —1)3
u, tl:'[ti_zl ti+2]
S()=<ra2 7(t,)
0, otherwise
Where
i+2
And  7(t) =[] (t-t,)

Where §;(t), S(t), S(b),..., Sa(t), S(t), S+1(t)} forms a basis for the spa@(ﬂ) of cubic polynomial splines.

Schoenberg [28] has shown that cubic B-splineste@a@inique nonzero splines of smallest compactaupyth the knots

at ta<t_o<t_1<to<t <...<t1<tp<tni1<tnio<tpss.

In the same way, the quartic B-splirfiR&)'s are defined by
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i+3 (t _t)4
= tOft L, 6,
R()=<ra2 7(t,) [tz Tual
0, otherwise
VI
Where (t —t) = (t,-v)°, ift >t
0, if t, <t

i+3

And  7(t) =[] (t-t,)

r=i-2

Where R(t), Ry(t), Ry(t), Ri(1),..., R.1(t), Ry(t), Ry+1(t)} forms a basis for the spa&(ﬂ) of quartic polynomial
splines by introducing two more additional kndtg,t ., to the already existing knots, to { ;. Schoenberg [28] has

shown that quartic B-splines are the unique nonzefimes of smallest compact support with the kratg ,<t s<t ,<t.

1<to<t1<... <tp1<t<tne1<tp+o<tn:s<tpis.
We define the approximation fott) as

n+l

v()=> a;S (9 ©)

=1

Where a;s are the nodal parameters to be determined Sf(d)' Sare the cubic B-spline basis functions. In

Petrov-Galerkin method, the basis functions shdwddzero on the boundary where the essential typboohdary
conditions are prescribed. In the set of cubic Basg {S;(t), S(t), S(1),..., S1(1), S(t), Si+1(b)}, the basis function§,(t),
S(t), S(t) do not become zero on the left boundary &hd(t), S(t) andS,..(t) do not become zero on the right boundary.
So, it is necessary to redefine the basis functistesa new set of basis functions which become perthe boundary.

Applying the essential boundary conditions of (#¢, get the approximate solutio(t) at the boundary points as
A=v@=Ut)=a,S(D+ra, Y +a, %} (4)
Co=v(D =) =0 S D+a, A D+a,; 3. ) (5)

Eliminating @_, and @, from the equations (3), (4) and (5), we get

v(t) = w(t)+iaj B (Y (6)

Where w(t)= A S, (D+ G

+1 (7)
S.(1) s.(p U
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S
SO-g 580, o
B,(1=1S (9, j=2,3,...n— 2 8)
S, (1) -
S (- (), =l
(D) S..(1) S.0), =rln

{éj(t), j=0,1,...,n} are the new set of basis functions for the appnakionv(t). Herew(t) takes care of given set

of essential boundary conditions aélj((t) 's are vanishing at the boundary. In the proposethmd, the new set of basis

functions and weight functions should be equalimber. Here the number of basis functions in thE@pmation forv(t)
in (6) is n + 1 and the number of weight functieme+4. So, it is necessary to redefine the wefigittions into a new set

of weight functions which are equal in number & basis functions.

Let us write the approximation foi(t) as

n+l

u(t)= 2 BR (Y 9)

Where R, (1)' sare the quartic B-splines.

Method with Boundary Conditions (2a)

Let us assume that approximatioft), given by (9), satisfies the conditions
u(a)=0,u(b)=0,u(a=0 (10)

Using (9) and (10), we get the approximate solutarru(t) at the boundary points as

U@ = U1 =3 B R(H =0 1)
uB=u1)= Y AR(1)=0 (12)
d(@=U(t)= Y, 4 R(H=0 13)

Eliminating8_, , 5, andf3,,, from the equations (9) and (11) to (13), we getapproximation fou(t) as

u()=> BT (1) (14)
j=0
where
_P(t) -
= Ry 0 T 9
P(1), j=2,3,4,..n
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R.
Rl(t)_RJ((r?O)) F\)—Z(D! j:_l,o,l
P()=1R (Y, i=2,3,4,..n- ! (16)
Ri(t) a
R (9 - ., j=n-2,n-1,
J( ) R_H,l(tq) R1+1(1) J n n n

Now the new set of weight functions for the appneaiion u(t) is{Tj(t), j=0,1,...,n}. Here

Ti(to) =T (}) =T (tp) =Ofor all .
Applying the proposed method to (1) with the newddévasis functiongB,(9), j =0,1,...,n} and with the new set

of weight function{[T,(9, j =0,1,...,n} defined in (15), we get

t t
ROV @®+ROVO+ BO YO+ KO {XE] Dt faOtDtc  fori012,.n.  (@7)
b b

Integrating by parts the first two terms on the leind side of (17) and after applying the boundamyditions

mentioned in (2a), we get

? AP i _a
[ROTOV =G ROTOL G- gal IR,

(18)
S InTlvd-S[ R T0),
jpl(oT(t)v"(odt j—[ (Y TOY ¥( ) de— [ KO ¢ (19)
Using (18), (19) and (6) in (17) and after rearemgnt, we get a system of equations in the mairix fas
Ka=f (20)
whereK = [k;];
g =[{-d TR0 TN+ BT + )t E)
dt dt for i=0,1,2,...,n: j=0,1,2,...,n. 1)
+R,OTOB 9+ RO T B(Y dt-a[ ROt i'()t]tn B(,)
f =il
edit@iaset.us
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=T S RO TN - D = R)EDE ©t
~P.OTOW()~ ROYTOWN de- BT, G ori0.Lz.n @)

d? d d
e [P T, A1+Et[ RO TOH], WCD +a[ HXTy, G

and a=[a,a,..a].
Method with Boundary Conditions (2b)
Let us assume that the approximatidt), given by (9), satisfies the conditions
u(a)=0,u(b)=0,u (8= 0 23)

Using (9) and (23), we get the approximate soluttru(t) at the boundary points as

1
u@=ut) =2 B R(1)=0 (24)
j=—2
n+l
u)=u(t)= >, B R(§)=0 (25)
j=n-2
1
u'(a=u'(y) =2, B R(1)=0 (26)
j=-2
Eliminating.,, 5.1 andg,., from the equations (9) and (24) to (26), we getahproximation fou(t) as
u(®=> BT (1 (27)
j=0
where
P (t) :
P (t) - P.(1), =01
T ()= (1) P (1) (] (28)
Pj(t), j=2,3,4,..n

And {Pj(t), j=-1,0,1,...n— 1n} are defined in (16).

Now {Tj(t), j=0,1,...,n} are the new set of weight functions for the apprnation u(t). Here
Tj (ty) :Tj (%)= Tj”(ro) =Qfor all j.

Applying the proposed method to (1) with the newdfeasis functiong Bj(b, j=0,1,...,n} and with the new

set of weight function$T,(9, j =0,1,...,n} defined in (28), we get
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ty ty
[[n®vem+Rova+ pO YO+ B O K6l D & @tDtdior z012,.n.  (29)
%) f

Integrating by parts the first two terms on the leind side of (29) and after applying the boundamyditions
prescribed in (2b), we get

CEEE dt:{jt( ROYTI ))} q{ (RCYTX } j LCHOUT) Ot ¢ (30)
t, ., t, d '

[ poTovd=-[_[ () TO] V() d (31)
to fo

Using (30), (31) and (6) in (29) and after rearemgnt, we get a system of equations in the matrix fas

Ka =f (32)
whereK = [k;];

j{[ () A ﬂ OUTR + @)t BOt

fori=0,1,2,...,n; j=0,1,2,...,n. (33)

+p,OT(HB (9+ ()T B} dt

f =il
f—j{q(t)T(H ol OO ﬂ D - O W) t ”
—Ps(OTOW) — p()T() W I} dﬁa[ KOtk Q- g SOl ¢
fori=0, 1, 2, ..., n
and a=[a,qa,..a,].
Method with Boundary Conditions (2c)
Let us assume that the approximatidt), given by (9), satisfies the conditions
u(a)=0,u(b)=0,u (a= 0 (35)

Let us proceed as in the case of method with bayretditions (2a){T(9), j =0,1,...,n}, as defined in (15),

are the new set of weight functions for the appr@tionu(t).
Applying the Petrov-Galerkin method to (1) with thew set of basis functior{si_snj( D, j=0,1,...,n} and with

the new set of weight functioqd (1), j =0,1,...,n} defined in (15), we get
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ty ty
[[n®v20+ROV+ pOYO+ BHOF HXE] D &) @tDtd  foriz012..0. (36
%) t

Integrating by parts the first two terms on the leind side of (36) and after applying the boundamyditions

prescribed in (2¢), we get

[ mTOw at= ST RO TO], (-0, G)- S w00, ( #0, 4

(37)
- S moTElvoa-S a0 TOL v
[ ROTOV ()= j ST 10l € o6 3[ @300, (&0 ¢ (39
Using (37), (38) and (6) in (36) and after rearemgnt, we get a system of equations in the matrix fas
Ka=f (39)
whereK = [k;];

j{[ R0 T +—2[ U1+ §)UDE Bt

(40)
+p,OTOB (9+ ROTO B} dfa[ B, B()
fori=0,1,2,..., n; j=0,1,2,...,n
f =[]
= [T Al RO T~ XD} - OUDE @t ) ) te)
-POTOW dt- o B TR, (G0, G)+ < BIDR,( A0, 4 @)

d n d
+a[ po(t)'ﬁ(t)]tn w (L)‘*a[ R(HT( ‘)]tn (C.-0,C,).
fori=0, 1, ..., n
and a=[a,aqa,...a,].

PROCEDURE OF SOLVING THE NODAL PARAMETERS

n-1
A general element in the matrig is given byz |, wherel :J-tmui(t)r]. ()M (t)dt, r;(t) are the cubic
tm

m=0

B-spline basis functions or their derivatives ap(t) are the quartic B-spline weight functions or thagrivatives. Here
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I, =0 if (t_p,t.3) N (-0t .0) N (4, st,.,) =0 . For the evaluation of eath, we have used 4-point Gauss-

Legendre quadrature formula. Due to this, therstgs matriX is a eight diagonal band matrix. Solving the syskax = f
by using the band matrix solution package, we lgetnodal parameter vecter We have used the FORTRAN-90 code to
solve the boundary value problems (1) - (2) bygt@osed method.

NUMERICAL EXAMPLES

To test the accuracy and efficiency of the devalopethod, we solved five linear and four nonlinfearth order

boundary value problems. The obtained numericalliefor each problem are presented in tabular $orm
Example 1

Consider the following linear boundary value praoble
v +4v=1 = -1<t< ] (42)

sinh2- sin2 V(1) = sin2- sinh 2
4(cosh 2+ cos?2) 4(cosh 2+ cos2

Subject tov(-1) = v(1)= 0,V(-1) =

The exact solution for the above problem is

v= 25 1- -sinhlsinlsinh sib+ coshlcoslcdsh o
' ) (cos2+ cosh 2) '

Dividing the domain [-1, 1] into 10 equal subintaels; the numerical results obtained for this problare
presented in Table 1.

Table 1: Numerical Results for Example 1

¢ Absolute Error by
Proposed Method
-0.8 8.095056E-06
-0.6 5.215406E-06
-0.4 7.696450E-06
-0.2 5.871058E-06
0.0 7.390976E-06
0.2 5.863607E-06
0.4 7.711351E-06
0.6 5.275011E-06
0.8 7.953495E-06

Example 2

Consider the following linear boundary value praoble
v +tv=—8+7t+t°)e, 0O<t<1 (43)
Subject tov(0) = v(1)=0,V(0) =1L, vV(D)=-e

The exact solution for the above problery is t(1—t)€.
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Dividing the domain [0, 1] into 10 equal subintds/athe numerical results obtained for this problane

presented in Table 2.
Example 3
Consider the following linear boundary value praoble
v —v'—v= d(t-3), 0< t<1 (44)

Subject tov(0) =1, v(1)= 0,V (0= O,v (Lr-e

The exact solution for the above problenvis € a-1.

Dividing the domain [0, 1] into 10 equal subintds/athe numerical results obtained for this problane

presented in Table 3.

Table 2: Numerical Results for Example 2

¢ Absolute Error by
Proposed Method
0.1 1.766533E-05
0.2 1.606345E-05
0.3 2.044439E-05
0.4 1.522899E-05
0.5 2.157688E-05
0.6 1.376867E-05
0.7 2.276897E-05
0.8 1.284480E-05
0.9 2.232194E-05

Table 3: Numerical Results for Example 3

¢ Absolute Error by
Proposed Method
0.1 3.695488E-06
0.2 5.424023E-06
0.3 3.099442E-06
0.4 6.198883E-06
0.5 3.218651E-06
0.6 4.947186E-06
0.7 4.649162E-06
0.8 3.665686E-06
0.9 5.483627E-06

Example 4

Consider the following linear boundary value praoble
vi® —y= —-4(2tcost+ 3sint ), Xt< (45)

Subject tov(0) =0, v(1)= 0,V' (O OV' (Ir 2sint 4co.

The exact solution for the above problent i (t2 -1)sint.
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Dividing the domain [0, 1] into 10 equal subintds/athe numerical results obtained for this problane

presented in Table 4.
Example 5

Consider the following linear boundary value praoble

vi¥ —3601' +3600v= -1+ 1800 , O<t< ] (46)
Subject tov(0) =1, v(1)= 1.5+ sinh(1),v (Oyv (O Oy (Hv (B- 0465 cddpsinh().

The exact solution for the above problerw is 1+ 0.5%% + sinh{ .

Dividing the domain [0, 1] into 10 equal subintdsjathe numerical results obtained for this problane

presented in Table 5.

Table 4: Numerical Results for Example 4

¢ Absolute Error by
Proposed Method
0.1 2.697110E-06
0.2 4.470348E-07
0.3 4.142523E-06
0.4 3.278255E-07
0.5 4.440546E-06
0.6 3.278255E-07
0.7 4.500151E-06
0.8 3.576279E-07
0.9 4.261732E-06

Table 5: Numerical Results for Example 5

¢ Absolute Error by
Proposed Method
0.1 2.384186E-06
0.2 2.264977E-06
0.3 4.768372E-06
0.4 2.741814E-06
0.5 2.980232E-06
0.6 4.768372E-07
0.7 7.152557E-07
0.8 1.668930E-06
0.9 2.384186E-07

Example 6

Consider the following nonlinear boundary valueljpem

v —6e® =-12(1+ t)*, O<t<: (47)
Subject to v(0) =0, v(1) =In 2, v(0) =1, V(1) = 0.5.

The exact solution for the above problem s In(1+t).

By using quasilinearization technique [22], the lirerar boundary value problem (47) is converted iat
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sequence of linear boundary value problems as

VO +[24e 0y = -12(1+ 1) + € [6+ 24y, ], = 0,1,2,3,. (48)

Subject 10/(n+1) 0)= O,V(n+1) @®=1In 2,\/(n+1) (OF 1,\}(n+ 1) Q= O..

Here V. is the(n+1)" approximation forv. The domain [0, 1] is divided into 10 equal sueimals and the
proposed method is applied to the sequence ofrlipezblems (48). The obtained numerical resultstifiis problem are

presented in Table 6.

Table 6: Numerical Results for Example 6

Absolute Error by
proposed Method

0.1 6.929040E-07
0.2 2.384186E-07
0.3 5.066395E-07
0.4 0.000000E+00
0.5 3.874302E-07
0.6 2.384186E-07
0.7 3.576279E-07
0.8 1.788139E-07
0.9 0.000000E+00

Example 7

Consider the following nonlinear boundary valuehpem
v —v2ZewW" = —4t7 + € (1417 - 4), 0<t<] (49)

Subject tov(0)=1,v())= 1+ e,v (0= 1V (IF 2 e

The exact solution for the above problenvis t*+¢€.

By using quasilinearization technique [22], the lirerar boundary value problem (49) is converted iat

sequence of linear boundary value problems as
n I, r 2 I, —
V((f,ll)+V(n)\/(n+1)-2\’(n)\(n+1)+ Uiy Yy =—4F+ ba+ T- 49-( yn)) + ¥yt N=0.12,... (50)
Subjectto V., (0) =1V, (D)= 1+ €,¥,.y, (0= 1V,., F 2 ¢

Here V(n+1) is the (N +1)th approximation for. The domain [0, 1] is divided into 10 equal subimgls and the

proposed method is applied to the sequence ofrlipezblems (50). The obtained numerical resultstiiis problem are

presented in Table 7.
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Table 7: Numerical Results for Example 7

Absolute Error by
Proposed Method

0.1 9.536743E-07
0.2 2.980232E-06
0.3 2.741814E-06
0.4 5.602837E-06
0.5 3.933907E-06
0.6 6.675720E-06
0.7 2.145767E-06
0.8 2.384186E-06
0.9 2.145767E-06

Example 8
Consider the following nonlinear boundary valuelpem
v® =sint+ sirft- [\/']2, O<t<1 (51)
Subjectto v(0)=0, v(1)= sin1y’ (0 0,v' (Ix- sin.
The exact solution for the above problent s Sint .

By using quasilinearization technique [22], the lirerar boundary value problem (51) is converted iat

sequence of linear boundary value problems as

Vi 12V ] iy =sin t+sinf t+ [V P, n=0,1,2,3,.. (52)
Subject to V,,,;,(0) =0, V., (D)= sin1V,,, (OF OV, (r- sin

Here V(n+1) is the (N +1)th approximation forv. The domain [0, 1] is divided into 10 equal subimgls and

the proposed method is applied to the sequendeeztrl problems (52). Numerical results for thisljjeon are presented in
Table 8.

Table 8: Numerical Results for Example 8

Absolute Error by
Proposed Method

0.1 8.456409E-06
0.2 1.586974E-05
0.3 2.205372E-05
0.4 2.574921E-05
0.5 2.697110E-05
0.6 2.521276E-05
0.7 2.157688E-05
0.8 1.531839E-05
0.9 7.987022E-06

Example 9

Consider the following nonlinear boundary valueljem
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vW-vi=d -t - -2t%, 0<t<1 (53)
Subjectto  v(0)=1,v())= 1+ e,v (0> v(OF OV (1 v(1¥F .

The exact solution for the above problenvis t* +¢.

By using quasilinearization technique [22], the Imar boundary value problem (53) is converted iat

sequence of linear boundary value problems as

n+l
Subjectto V,.;,(0) =1,V.y, ()= 1+ €,V (O) Yo (OF 0¥, (& Vs @ .

Here V(n+1) is the (N +l)th approximation fov. The domain [0, 1] is divided into 10 equal subiugls and the

proposed method is applied to the sequence ofrlipgblems (54). The obtained numerical resultstiiis problem are

presented in Table 9.

Table 9: Numerical results for Example 9

Absolute Error by
Proposed Method

0.1 1.668930E-06
0.2 1.192093E-07
0.3 2.026558E-06
0.4 1.668930E-06
0.5 3.695488E-06
0.6 2.145767E-06
0.7 5.245209E-06
0.8 3.814697E-06
0.9 4.053116E-06

CONCLUSIONS

In this paper, we have solved a general fourthrongle point boundary value problem with three diéfiet cases
of boundary conditions by the proposed method withic B-splines as basis functions and quartic Biep as weight
functions. The cubic B-splines and quartic B-s@irsge redefined into new sets of functions whichtaim the equal
number of functions. To test the accuracy and iefiicy of the developed method, it has been tegtdive linear and four
nonlinear fourth order boundary value problemsis found that the obtained results are givingtielerror. The strength

of the developed method lies in the easiness afifdication, accuracy and efficiency.
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